Implementation of a Mortar Mixed Finite Element Method using a Multiscale Flux Basis

نویسندگان

  • Benjamin Ganis
  • Ivan Yotov
چکیده

This paper provides a new implementation of a multiscale mortar mixed finite element method for second order elliptic problems. The algorithm uses non-overlapping domain decomposition to reformulate a fine scale problem as a coarse scale mortar interface problem, which is then solved using an iterative method. The original implementation by Arbogast, Pencheva, Wheeler, and Yotov, Multiscale Model. Simul. 2007, required solving one local Dirichlet problem on each subdomain per interface iteration. We alter this implementation by forming a multiscale flux basis. This basis consists of mortar functions representing the individual flux responses for each mortar degree of freedom, on each subdomain independently. The computation of these basis functions requires solving a fixed number of Dirichlet subdomain problems. Taking linear combinations of the multiscale flux basis functions replaces the need to solve any Dirichlet subdomain problems during the interface iteration. This new implementation yields the same solution as the original implementation, and is computationally more efficient in cases where the number of interface iterations is greater than the number of mortar degrees of freedom per subdomain. The gain in computational efficiency increases with the number of subdomains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiscale Mortar Multipoint Flux Mixed Finite Element Method

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces....

متن کامل

Efficient algorithms for multiscale modeling in porous media

We describe multiscale mortar mixed finite element discretizations for second order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mo...

متن کامل

A Stochastic Mortar Mixed Finite Element Method for Flow in Porous Media with Multiple Rock Types

This paper presents an efficient multiscale stochastic framework for uncertainty quantification in modeling of flow through porous media with multiple rock types. The governing equations are based on Darcy’s law with nonstationary stochastic permeability represented as a sum of local Karhunen-Loève expansions. The approximation uses stochastic collocation on either a tensor product or a sparse ...

متن کامل

A Multiscale Mortar Mixed Finite Element Method

We develop multiscale mortar mixed finite element discretizations for second order elliptic equations. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. The polynomial degree of the mortar and subdomain approximation spaces may differ; in fact, the mortar sp...

متن کامل

A multiscale preconditioner for stochastic mortar mixed finite elements

0045-7825/$ see front matter 2010 Elsevier B.V. A doi:10.1016/j.cma.2010.10.015 ⇑ Corresponding author. E-mail address: [email protected] (T. Wilde The aim of this paper is to introduce a new approach to efficiently solve sequences of problems that typically arise when modeling flow in stochastic porous media. The governing equations are based on Darcy’s law with a stochastic permeability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009